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ABSTRACT

FINDING TERMINATION AND TIME IMPROVEMENT IN

PREDICATE ABSTRACTION WITH UNDER-APPROXIMATION

AND ABSTRACT MATCHING

Dritan Kudra

Department of Computer Science

Master of Science

The focus of current formal verification methods is mitigating the state explo-

sion problem. One of these formal methods is predicate abstraction, which reduces

concrete states of a system to bitvectors of true/false valuations of a set of pred-

icates. Predicate abstraction comes in two flavors, over-approximation and under-

approximation. A drawback of over-approximation is that it produces too many

spurious errors for data-intensive applications. A more recent under-approximation

technique which does not produce spurious errors, does abstract matching on concrete

states (AMCS). AMCS adds behaviors to an abstract system by augmenting the set

of initial predicates, making use of a theorem prover. The logic behind this approach

is that if an error is found in the early coarse abstractions of the system, we save

space and time. Our research improves AMCS by providing a refinement technique

which guarantees termination. Our technique finds errors in less time and space by
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using an abstract state splitting algorithm based on intervals, which does not require

a theorem prover.
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Chapter 1

Introduction

Explicit model checking shows the relationship between a system and a formula

using state enumeration. The system in our research is represented by a piece of

software, and for our purposes, the goal of model checking is to find errors inside

this software. The traditional approach to finding errors is through extensive testing

of different scenarios in the system; however, traditional testing with sampling does

not work for large systems where correctness is essential because often there are bugs

in the untested areas of the system. Systems such as vehicle embedded software,

transaction protocols, or critical parts of operating systems, need almost absolute

correctness because of financial and safety reasons.

A way to model check a system is a method called explicit state enumeration

(ESE). In ESE we verify a system by creating a connected graph of all the reachable

states. This technique is effective but not feasible for solving most real-life problems

due to memory and time limitations in current hardware. As systems get more

complex, their state graph becomes exponentially bigger causing a problem called

state explosion.

One of the major areas of research in verification and validation is mitigating

the state explosion problem. Some ways to deal with this problem are: symbolic

model checking, dead variable analysis, symmetry reduction, and predicate abstrac-

tion. Symbolic model checking addresses the space explosion problem by using binary

decision diagrams to store the possible states in a system [12]. Dead variable analysis

1
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traverses a program looking for dead variables in order to avoid storing them inside

states [11]. Symmetry reductions find symmetries in a state graph in order to store

only one of the symmetric sides [10]. Predicate abstraction, which is the general area

of our research, stores valuations of predicates, rather than concrete states, in order

to minimize the stored information and still preserve error-detection capacity [8].

In predicate abstraction, we map a concrete state to a bitvector of true/false

valuations of a set of predicates. More formally, this mapping is done by an abstrac-

tion function αΦ(s), where Φ is a predicate set, s is a concrete state, and α builds

the bitvector by evaluating each predicate in Φ on s. An abstract state is formed by

AND-ing all the predicate valuations denoted by the bitvector.

Predicate abstraction can over-approximate or under-approximate [13] a sys-

tem. Over-approximation happens when the abstraction has additional behaviors

compared with the concrete system. In this case, if an error is found in the ab-

straction, we know that there might be an error in the concrete system, but we are

not sure because the abstraction has extra-behaviors. On the other hand, in under-

approximation, the abstraction has only behaviors that exist in the concrete system.

If an error is found in the abstraction, we are guaranteed an error in the concrete

system [15, 4, 8, 7]. Our research is in this latter sub-field of predicate abstraction.

A recently published under-approximating technique uses abstract matching on

concrete states [13]. For simplicity, we call this method AMCS. Abstract matching

on concrete states means that during the search we still explore concrete states, just

like in ESE, but the matching for existing states is done on abstract states. In order

to save time and space, AMCS progressively includes behaviors of the real system

by augmenting the predicate-set on successive iterations. As the predicate-set is

augmented, new behavior is added to the abstract system in an effort to find errors.

This process is called refinement. Refinement terminates when the abstraction is a

precise representation of the real system or when an error is discovered. Since the

2
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check for errors in the abstract system is done after each iteration, it is hoped to

detect an error during the early refinement steps without having to store or explore

a lot of behaviors from the real system.

AMCS suffers from a few drawbacks. Its process of refinement through aug-

mentation of the predicate-set can potentially not terminate because in most cases,

AMCS cannot detect that the abstract system is a bissimulation of the real system.

When the algorithm terminates without finding errors, most often it has explored the

whole concrete state graph. In addition, AMCS employs a theorem prover to detect

the need for refinement, but this external tool consumes the majority of the search

time and makes error discovery very slow.

In our research, we address the non-termination and the large theorem prover

overhead of AMCS. We provide a comparison study on three new techniques that use

the same under-approximating search pattern as AMCS but guarantee termination

and need no theorem prover. The main idea behind our new techniques is that they

augment the abstract state space in iterative steps until either an error is found or

we have a 1:1 relation between the concrete and abstract state spaces. The abstract

state space is augmented by splitting those abstract states that have more than one

concrete state match. This multiple-match condition is detected by storing inside

each abstract state, max/min values from the concrete states matching to it. These

new techniques outperform AMCS in error discovery and each has different strengths

and weaknesses, which we explore in latter sections of this paper.

3
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Chapter 2

Background

In this section we give a detailed explanation of the AMCS algorithm. In order

for the reader to better understand this algorithm, we need to introduce the concept

of precise abstraction.

2.1 Precise Abstraction

Consider a transition s1
i→ s2 between two concrete states and an abstraction function

αΦ. An abstraction is considered precise if every concrete state in αΦ(s1) transitions

under i to at least one concrete state in αΦ(s2) [1, 5, 6]. The abstraction would not

be precise if at least one concrete state in αΦ(s1) does not transition to any concrete

states in αΦ(s2) [2, 3, 8, 16].

2.2 AMCS

AMCS makes use of weakest precondition to detect precise abstraction in order to

stop its refinement process. The idea behind the AMCS algorithm is to do as little

refinement as possible before finding errors, since more refinement usually means more

states to store. The interested reader is referred to [13] for more details.

4
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2.2.1 The AMCS Model

The program model that AMCS uses is just a list of guarded transitions. More

formally, a model M is defined as: M = {(V, T ) | T = {t1, ...tk}} where each ti is a

transition such that ti = (gi(x) → x = ei(x)). In this setup, x is a set of variables and

ei(x) is the set of assignments to these variables under transition i. V represents a

set of integer variables that is finite. The guard gi is the conjunction of a mandatory

program location and an optional predicate p. The concrete state space generated by

a model M is a transition system ‖M‖ defined as: ‖M‖ = (S, { i→}, s0, L), where S is

a set of concrete states, { i→} is a transition relation between concrete states, s0 is a

start concrete state, and L is a labeling function where L(s) = {p ∈ AP | s |= p} for

a set of atomic prepositions AP . The notation s |= p means that p holds in s. The

set of reachable labelings in a transition system ‖M‖ is: RL(‖M‖) = {L(s) | s ∈ S :

s0
∗→ s}

2.2.2 The AMCS algorithm

AMCS has two parts which execute in turns: the control shown in Algorithm 1 and

the search shown in Algorithm 2. At the start, AMCS has a set of initial predicates

that is augmented during each call to the search algorithm. Each of these calls to

search constitutes a refinement step. The control gets an abstract system from the

search at line 3 and checks it for errors. More formally, the abstract system created

by search is defined as: αΦ(‖M‖) = (States, Transitions) returned by search(M, Φ).

The control also gets a new set of predicates from the search at line 3, and at line

7, checks it against the old set of predicates to see if it is refined. In the control, if

the predicate-set is refined and no error is found, we call the search again to build

another abstract system from the new set of predicates. Also in the control, if the

predicate-set is not refined, we know that the abstraction is precise, and we terminate

because there are no more behaviors left to consider.

5
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Algorithm 1 control(error condition)

1: i = 1; Φi = initial predicate set;
2: while true do
3: (States, Transitions, Φi+1) = search(M, Φi)
4: if error condition is reachable in (States, Transitions) then
5: return counter-example
6: end if
7: if Φi+1 = Φi then
8: return unreachable
9: end if

10: end while

Algorithm 2 is responsible for building the abstract state-space from the cur-

rent set of predicates and also for creating the new set of predicates for a possible

next iteration. The concrete-state search is breadth-first (BFS) and there is a BFS

Wait queue introduced at line 1, where we put only those concrete states that map

to new abstract states. Matching for states already seen is done on abstract states;

this check is at line 13. At the end of the search, we return αΦ(‖M‖) and Φnew to

the control on line 24.

Refinement is the augmentation of our set of predicates Φ to create a new set of

predicates Φnew, which should be one step closer in making the abstraction in the ab-

stract transition graph precise with respect to all transitions; though, not guaranteed.

Most of the time, refinement is done by computing the weakest precondition (wp) of

the abstraction of a successor of a concrete state and checking to see if the weakest pre-

condition includes the concrete state. Based on set theory, this inclusion would mean

that our abstraction is still precise; the first violation of this inclusion would mean an

imprecise abstraction. The main part of refinement is αΦ(s) ⇒ αΦ(s′)[ei(x)/x] on line

10, which is equivalent to αΦ(s) ⇒ wp(αΦ(s′), i). Note that the weakest precondition

wp(αΦ(s′), i) of an abstract state αΦ(s′), is a predicate-defined set that represents all

possible concrete states that end up inside αΦ(s′) after taking transition i. Intuitively,

the weakest precondition of an abstract state under transition i is the abstract state

6
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Algorithm 2 search (M, Φ)

1: Φnew = Φ; add s0 to Wait; add αΦ(s0) to States
2: while Wait 6= 0 do
3: s = Wait.dequeue()
4: for all possible transitions i from s do
5: if s |= gi then
6: if αΦ(s) ⇒ (guard of i) then
7: add gi to Φnew

8: end if
9: s′ = successor of s after taking transition i

10: if αΦ(s) ⇒ αΦ(s′)[ei(x)/x] is not valid then
11: add predicates in αΦ(s′)[ei(x)/x] to Φnew

12: end if
13: if αΦ(s′) /∈ States then
14: Wait.enqueue(s′); add αΦ(s′) to States
15: end if
16: add (αΦ(s), i, αΦ(s′)) to Transitions
17: else
18: if αΦ(s) ⇒ (complement of guard of i) then
19: add gi to Φnew

20: end if
21: end if
22: end for
23: end while
24: return (States, Transitions, Φnew)

created by applying the inverse of transition i to αΦ(s′). The implication in line 10

of Algorithm 2 is interpreted as the set inclusion of the left side into the right side.

The evaluation of this implication is done with a theorem prover which is implicitly

incorporated into the algorithm. The order of operation on the right side of the impli-

cation is: we first evaluate αΦ(s
′
) and then substitute every occurrence of variable x

with its valuation under transition i. To form Φnew, we add to Φ the predicates from

the weakest precondition. Adding the wp-predicates, is an attempt to assure that

our precision check αΦ(s) ⇒ wp(αΦ(s′), i) does not fail on the next iteration on this

same abstract state and transition. Note that there are cases where αΦ is precise with

respect to s
i→ s

′
, but the weakest precondition does not detect that precision. One

such case happens when there are no states s′ in the concrete state space such that

7
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l0: x:=0 l1: x:=x+1;
(a) (b)

l0: x:=0; y:=0; l1: while(y≥0){ l2: y:=x+y; }
Figure 2.1: AMCS non-terminating example

αΦ(s) = αΦ(s′) for s 6= s′, and the check αΦ(s) ⇒ wp(αΦ(s′), i) fails. This drawback

makes weakest precondition an uncertain technique for detecting precise abstraction.

It is to be noted that adding more predicates using weakest precondition does

not necessarily add more refinement in the abstract state space. It could happen that

after augmenting the predicate set, the abstract system graph does not change shape

and all the abstract states include the same concrete states that they had before the

augmentation [7, 15]. So refining with weakest precondition is just a heuristic that

potentially adds precision during each refinement step, but it does not guarantee a

bounded number of refinements.

An example where the weakest precondition fails to refine the system is given in

Figure 2.1. This is a pathological example taken from [13] (although, our experiments

show that similar constructs occur frequently). The initial predicate set is Φ =

(y ≥ 0). When reaching transition y = x + y, after substituting and abstracting on

line 10, we get the implication ((y ≥ 0) = T ) → ((x + y) ≥ 0) = T ). The implication

fails, and we add predicate (x + y) ≥ 0 to Φnew. On the successive iterations, we

augment our predicate set with predicates of the form (ax + y), where a is always

increasing [9, 13]. The algorithm does not terminate because new predicates, which

do not alter the abstract state space, are infinitely added to our predicate-set on each

call to search. These new predicates add no relevant information that the theorem

prover can use to resolve the implication.

Even in the cases when AMCS does terminate, most often it ends up exploring

the entire concrete state space of a model. We discover this in implementing AMCS

8
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inside the Bogor model checker using BIR as the input language for the models. In

this preliminary experiment we wanted to see how often AMCS terminates and how

often it finds an abstract bissimulation that has less states than the concrete system.

Our results from this experiment are shown in Table 2.1. In 6 out of 10 models, the

search does not terminate, which is indicated by NT. When it terminates, three out

of four times we have no reduction in the final number of states compared with the

concrete state graph. In addition, the theorem prover takes about 76% of the search

time on the Table 2.1 models.

Two techniques are mentioned in [13] to somewhat mitigate non-termination

and theorem prover overhead. The first is Add-All AMCS. The main idea in Add-

All AMCS is that whenever we have an imprecise transition, we add to our global

set of predicates the predicates describing the concrete state where this transition

originated. The addition can be done after a transition has shown to be imprecise

in a number of consecutive iterations of search. Termination is guaranteed by this

variation of AMCS, but one can imagine how big our predicate set gets after adding

predicates to describe full concrete states every time the search encounters an impre-

cise transition. In addition, our experiments show that Add-all AMCS is too slow in

error-discovery due to the theorem prover.

The second technique is No-TP AMCS. The main idea here is that we do not

employ a theorem prover. The technique considers all transitions as imprecise and

adds predicates with weakest precondition on all of them. No-TP AMCS does not

incur the overhead of the theorem prover, but if the search does not exit on error,

non-termination is unavoidable since transitions are never checked for precision in the

abstraction. Treating all transitions as imprecise means that we increment our set

of predicates on all of them, making this set grow large quickly. The results of our

experiments show that No-TP AMCS is also slow because of the overhead required in

computing new predicates on every transition. Each solution that we provide in this

9
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Table 2.1: AMCS error-free search

Models States Explored
Barbershop 4621 states (no gain)
Branches NT
CustWorkers 5014 states (no gain)
DiningPhil 2847 states (no gain)
Fibonacci NT
Factorial NT
Handshake 79/298 bissimulation
Hyman NT
Stack NT
SumToN NT

paper, in itself, mitigates the termination and theorem-prover-overhead problems.

In addition, our solutions prove to be more effective in error-discovery than AMCS,

Add-All AMCS, and No-TP AMCS.

10
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Chapter 3

Solution

In essence, AMCS splits abstract states until it either finds an error or a precise

representation of the concrete system. Its splitting technique guarantees that it will

eventually reach a bissimilar structure to the concrete system, but the technique could

also keep adding predicates with weakest precondition even after we have reached

a bissimulation. So in our solution, we are looking for splitting techniques that

guarantee termination and find errors faster. Below we introduce a general technique

for achieving this goal.

3.1 Splitting Technique

In order to split abstract states, we need a splitting condition that indicates which

states to split. The splitting condition is satisfied when an abstract state has at least

two distinct concrete states mapped to it. More formally this is expressed as:

Having ‖M‖ = (S, { i→}, s0, L), two states s1, s2 ∈ S meet the splitting condi-

tion if αΦ(s1) = αΦ(s2) ∧ s1 6= s2. We denote this splitting condition as a relation

SplitCond(s1, s2), that returns true when s1 and s2 meet the condition.

To illustrate a situation where SplitCond(s1, s2) holds, consider concrete states

s1 = (x = 3) and s2 = (x = 4). These states match under the same abstract state

α = (x < 5). In this case, SplitCond(s1, s2) returns true because αΦ(s1) = αΦ(s2)

and s1 6= s2.

11
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Algorithm 3 GeneralSplitting(‖M‖ , Φ)

1: while (true) do
2: if error found in αΦ(‖M‖) then
3: return counter − example
4: end if
5: add predicates Φnew to split all members of Eligible(Φ)
6: if (Φ = Φnew) then
7: return unreachable
8: end if
9: Φ = Φnew

10: end while

Now we need to define the set of abstract states that satisfy the spliting condi-

tion. These are the states that we can split. We formally call this set Eligible(Φ). For

a transition system ‖M‖: Eligible(Φ) = {α | ∃s1, s2 ∈ S. SplitCond(s1, s2) ∧ α =

αΦ(s1)}

Now our general technique for splitting becomes: refine Φ such that each mem-

ber of Eligible(Φ) is split in Φnew. This technique is implemented in Algorithm 3.

We pass to the algorithm a concrete transition system ‖M‖ and an initial set of pred-

icates Φ. The output is either a counter-example to the error or unreachable, which

means that no error was found. Each iteration of the outside while loop represents a

refinement step. On each refinement step, we first abstract the concrete system ‖M‖

creating αΦ(‖M‖), then search this abstraction for errors. The search happens in line

2. If no error is found, we need to add more behaviors to the abstract system for

the next refinement step. The behaviors are added by augmenting Φ to create Φnew,

which is the set of predicates for the next iteration. The set is augmented on line

5, where we add predicates that split all members of Eligible(Φ). If Eligible(Φ) is

empty then Φ = Φnew, and we return unreachable in line 7.

The main difference between AMCS and GeneralSplitting is that AMCS splits

abstract states until it creates a bissimulation of the concrete system, which it often

cannot detect. On the other hand, GeneralSplitting splits abstract states until it

12



www.manaraa.com

creates a 1:1 relationship between the concrete and abstract systems. Now lets prove

that GeneralSplitting fulfills our expectations; meaning that it always terminates and

always finds valid errors.

Theorem 1: GeneralSplitting(‖M‖ , Φ) always terminates if ‖M‖ is finite.

Proof: The only way in which GeneralSplitting could not terminate is

if Eligible(Φ) never becomes empty. We proceed by contradiction. As-

sume that Eligible(Φ) never becomes empty. This means that when running

GeneralSplitting(‖M‖ , Φ) for a finite ‖M‖, every refinement step, SplitCond(s1, s2)

is true for some pair of states s1, s2. If SplitCond(s1, s2) is always true, we always

keep splitting concrete states from falling under the same abstract state, and there

are always abstract states to divide. Continuous splitting could only arise if ‖M‖ is

infinite, which contradicts the original assumption.

Theorem 2: If GeneralSplitting(‖M‖ , Φ) returns unreachable, then the error is

indeed unreachable in ‖M‖.

Proof: GeneralSplitting(‖M‖ , Φ) returns unreachable when Eligible(Φ) is empty,

which by definition happens when no two different concrete states match under the

same abstract state. In this case there is a 1:1 relationship between abstract states

in αΦ(‖M‖) and concrete states in ‖M‖. Based on this 1:1 relationship, we can say

that if there is no error in αΦ(‖M‖), then there is no error in ‖M‖ either.

Theorem 3: If GeneralSplitting(‖M‖ , Φ) returns an error, this error exists in

‖M‖.

Proof: All errors found inside αΦ(‖M‖) exist in ‖M‖ because by definition,

αΦ(‖M‖) is an under-approximation of ‖M‖.

13
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Chapter 4

Our Techniques

There are two things missing from GeneralSplitting to make it implementable.

First, we need a search algorithm that produces αΦ(‖M‖) as an under-approximation

of ‖M‖. The second missing item is a way to detect a member of Eligible(Φ) and

add a predicate to split it. To deal with the first problem we borrow the BFS con-

crete search with abstract matching from AMCS, which always produces an under-

approximation of ‖M‖. The search is shown in Algorithm 4, which we can call at

line 2 of Algorithm 3 when we create αΦ(‖M‖). The search is similiar to Algorithm 2

with the exception that it does not employ the theorem prover. So lines 6, 10, 11,

and 18 of Algorithm 2 are omitted in Algorithm 4. To solve the second problem of

computing the eligible set, we store inside an abstract state the maximum and min-

imum values for each variable of the concrete states matching to this abstract state.

Intuitively, each max-min pair forms a segment in space. Adding a predicate that

splits one of these segments also splits its owning abstract state. Mathematically, if

there is a variable x for which max(x) 6= min(x), we know that this abstract state

has more than one concrete state match to it, and we can add a splitting predicate.

During the design of our different error-search solutions, we are interested in

keeping the abstract state space small to avoid state explosion at the abstraction

level. It is true that GeneralSplitting explores the whole concrete state space in

its worst case, but usually we hope to discover the error in the earlier and coarser

abstractions of the concrete system. So an abstraction technique that explores the

14
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Algorithm 4 BFS-AMCS(M, Φ)

1: Φnew := Φ; add s0 to Wait; add αΦ(s0) to States
2: while Wait 6= 0 do
3: s = Wait.dequeue()
4: for all possible transitions i from s do
5: s′ := successor of s after taking transition i
6: if αΦ(s′) /∈ States then
7: Wait.enqueue(s′); add αΦ(s′) to States
8: end if
9: add (αΦ(s), i, αΦ(s′)) to Transitions

10: end for
11: end while
12: return (States, Transitions, Φnew)

whole concrete state space on the second or third refinement step is not ideal because

it does not give much room for early error discovery in a small abstract state space.

On the other hand, we also have to consider not increasing the abstract state space

too slowly since this incurs unnecessary time overhead until an error is found. With

these ideas in mind, we present three different under-approximation search heuristics

in the following sections.

4.1 MaxOverlap

Being frivolous in adding predicates is not a good idea because we might hit state ex-

plosion fast and not find any errors. We present a technique in which each refinement

step of Algorithm 3 adds to Φnew the predicate that divides the most abstract states.

We compute this predicate by plotting in an axis, for each variable, the max-min

segments stored inside each abstract state. Then for each plot we add a predicate

at a point of maximum overlap between these segments. From all these computed

predicates, we pick the one that splits the most states. If there are ties, we choose

randomly between the candidates.

An example that illustrates MaxOverlap is shown in Figure 4.1. The figure

shows three abstract states α1, α2, and α3, which hold their max-min segments for a
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a3 

Max(x)=4Min(x)=3

a1 

Max(x)=5Min(x)=1

a2 

Max(x)=8Min(x)=2

a1
a2

a3

1 5
2 8

3 4

Figure 4.1: MaxOverlap example

variable x. In order to add a predicate that splits the most of these states, we plot

all max-min segments and compute the points of maximum overlap. In this case, any

point in the segment [3, 4] is a maximum overlap point. If we pick the point 3 and

add predicate x > 3, that predicate effectively splits all three abstract states.

4.2 MinSet

Adding one maximum-overlapping predicate every time we abstract the concrete sys-

tem, as in MaxOverlap, is good for keeping the abstract state space small, but it may

be slow in error-discovery because the abstract state space increases in very small

increments. To speed up error discovery, we present a heuristic called MinSet. In

MinSet, over all the variables in the program, we find a minimal set of predicates

that splits all states in Eligible(Φ).

An example that illustrates MinSet is shown in Figure 4.2. In the figure we

again have three abstract states α1, α2, and α3 which we want to split; however, now

we have stored max-min segments for variables x and y. Just as in MaxOverlap,

we plot the max-min segments for each variable. Now we traverse the plotted graph

looking for a minimal set of predicates that splits all states. In this case, for variable

x, one such set is {(x > 2), (x > 6)}; for variable y a possible set is {(y > 2), (y > 6)}.

Now we put all these predicates and all our abstract states in a table as shown in

Figure 4.2, assigning a 1 where the predicate splits a state, and a 0 when it does not.
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x

a1
a2

a3

1 3
2 5

6 7

y

2 3
4 7

6 8

110y>6

001y>2

100x>6

011x>2

a3a2a1

Figure 4.2: MinSet example

The next step is to search the table and compute a minimum set of predicates that

splits all states, which in essence, is the minimum covering problem. We solve this

problem with a standard greedy heuristic that iterates through the table, finding and

storing the predicate that splits the most abstract states. The process continues until

we have predicates for splitting all abstract states. The complexity of this algorithm is

N2log(N). After we have found this minimal set of predicates, we add it to our global

set of predicates to be used in the next iteration. Since we use a greedy algorithm, the

final set found is not guaranteed to be the optimal answer, but a more comprehensive

algorithm might also require more time and memory.

4.3 MinOnly

The techniques that we have used so far for detecting members of Eligible(Φ) store

inside an abstract state both the maximum and minimum values for each variable.

This is necessary when we are computing overlapping of max-min segments, but what

if there is a more efficient way to detect and split members of Eligible(Φ). If we could

improve this operation in terms of time and memory, we would be able to find more

errors faster, since the whole search would be faster and more abstract states could be
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a1 (x>5=T)

unique(x)=FMin(x)=6

a3 (x>5=T, x>6=F) a4 (x>5=T, x>6=T)

�Refinement 1

�Refinement 2 Min(x)=6 Min(x)=8unique(x)=T unique(x)=T

s1

x=6

s2

x=8

Figure 4.3: MinOnly example

stored. One such technique is accomplished by storing inside an abstract state for each

variable only the minimum values and a boolean unique. The variable unique tells us

whether two or more distinct values are used to compute its corresponding minimum,

which happens only if this abstract state is a member of Eligible(Φ). We call this

method MinOnly. Just like in MinSet, in every refinement step of Algorithm 3, we add

predicates to split all members of Eligible(Φ). This time, however, we do not incur

the computational cost of finding a minimal set to accomplish this task, but instead,

for each member of Eligible(Φ), we add a predicate of the form var > min(var).

Since we store minimum values for every variable in the program, there could be

more than one variable that we could use to compute this predicate. To break these

ties, we randomly pick between the variables that have minimums that can split the

abstract state, which by design, are the variables that have their unique set to false

1.

An example that illustrates MinOnly is shown in Figure 4.3. In the figure we

have two concrete states s1 and s2 storing values for variable x. Both concrete states

1We randomly break ties in all algorithms to control for default search order
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match under the same abstract state α1 for predicate (x > 5). The abstract state α1

is a member of Eligible(Φ) because more than one distinct state matches to it, but in

order to detect this fact, we have stored inside it the minimum value for x and have

set unique to false to indicate that at least two distinct values are used to compute

this minimum. Now if we want to split α1, all we need to do is add the new predicate

(x > min(x)) to our set of predicates. In this case, the new predicate is (x > 6). A

predicate of the form (x 6= min(x)) can also accomplish the same purpose, but since

it is less general than (x > min(x)), it might increase the number of predicates before

the error is found. As it can be seen in the figure, in the second refinement, α1 is split

into α3 and α4, which are not members of Eligible(Φ) and can be split no further.
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Chapter 5

Experiment and Results

In our experiment we wanted to see which of the following approaches finds

errors faster using fewer resources. The approaches we consider are: MaxOverlap,

MinSet, MinOnly, RandomDFS, AMCS, AMCSNoTP, and AddAll-AMCS.

5.1 Implementations

In order to analyze AMCS and our techniques, we implement them in java as exten-

sions to Bogor, which is an extensible software model checking framework developed

at Kansas State University [14]. In our implementations we use the Simplify theorem

prover, which is also used in the AMCS paper [13]. The input-models are written in

BIR, which is the Bogor modeling language. We also implement a random depth-first

concrete search (RandomDFS), to see how our heuristics perform against it. Ran-

domDFS has the same general structure as normal DFS, with the exception that

when it decides which node to visit next, it chooses randomly among all unvisited

child nodes of the node where the search is at that point in time.

5.2 Hardware

All experiments are run on a Pentium-4 machine with Windows-XP and 2GB of

RAM.
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5.3 Independent Variables

The Models

We create a few models of well-known concurrency problems, such as dining-

philosophers, barbershop, hyman, customers-workers, etc. These models are in the

ranges of 500000− 1000000 states. To avoid being bias in the selection of our proper-

ties to be verified, we randomly choose 40 states in each model and mark these states

as errors. Then we run each implementation on all models to see how it performs in

finding these errors. In order to measure efficiency in error discovery, we introduce a

time bound of five minutes to search each model. This creates a situation where time-

wise it is hard for the implementations to explore the whole concrete state space in

any of the models. In an industry scenario, this time bound would scale and represent

how long we are willing to wait for an answer from the model checker.

5.4 Dependent Variables

Measured Categories

Every time an implementations finds an error, we store: the time it took to find the

error, the number of states, the number of predicates, the number of refinements,

and counter-example depth. The counter-example depth is the length from the initial

state to our error.

5.5 Results

In this section we present the results on how each implementation performs on all the

models in terms of error-discovery. The tables in this section represent the average

results over 12 runs of our experiment. We stop at this number of trials after running
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a student’s t-test, which shows that all of our results are statistically significant at

the 0.05 confidence level or below.

5.5.1 Table Legend

In order to quantify our results, we use a scoring mechanism based on points. We

could just report the raw data that we get from the experiment, but due to the size

of the data set, we need a way to summarize the data so that results are easier to

understand. To this end, we give a point to each win on each measured category. If

there are ties, we give a point to all winners. For example, a win on time is given to

the implementation that finds a particular error faster than all other implementations.

In this case, the winning implementation gets a point. A win on states is given to the

implementation that has less states than all other implementations at the moment of

error discovery. Similarly, a win on predicates is given to the implementation having

less predicates than all other implementations at the moment of error discovery. In

terms of depth, a win is given to the implementation that has the shortest path from

the initial state to the error at the moment of error discovery.

The result tables show the winner implementations in terms of: time, states,

predicates, and error-depth. The data is normalized for ease of reading. In the tables,

the implementation that wins on most errors for a particular model, gets a 1; the other

implementations get a relative score compared to the winner. For example, looking

at Table 5.1, MinOnly on model SumToNBig finds the quickest the most errors, so

we assign it a 1. The rest of the techniques are assigned a score which is the ratio

of how many errors they find the quickest over how many errors MinOnly finds the

quickest.

Here is an illustrating example on our scoring mechanism. Assume our only

implementations are MinOnly and MaxOverlap. There are 40 errors total and Mi-

nOnly finds the quickest 20 of them. Max-Overlap finds the quickest 10 errors, and
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Table 5.1: Normalized time results

Models AMCS RandDFS AMCSNoTP MinOnly MaxOverlap AddAll MinSet
Branches 0.00 0.22 0.00 0.00 1.00 0.00 0.33
SumToNBig 0.00 0.00 0.00 1.00 0.80 0.00 0.00
CustWorkers 0.00 0.00 0.00 1.00 0.36 0.00 0.00
MultiplyToN 0.00 0.11 0.00 1.00 0.44 0.00 0.00
Hyman 0.00 0.19 0.00 1.00 0.00 0.00 0.00
DiningPhil 0.00 1.00 0.00 0.25 0.00 0.00 0.00
Barbershop 0.00 0.00 0.00 1.00 0.15 0.00 0.00

Table 5.2: Per model percentage of errors found over total errors

Models AMCS RandDFS AMCSNoTP MinOnly MaxOverlap AddAll MinSet
Branches 0.02 0.30 0.05 0.32 0.35 0.02 0.15
SumToNBig 0.20 0.00 0.20 0.45 0.30 0.20 0.20
CustWorkers 0.15 0.32 0.00 0.48 0.22 0.15 0.15
MultiplyToN 0.18 0.05 0.20 0.70 0.35 0.18 0.15
Hyman 0.00 0.32 0.00 0.48 0.02 0.00 0.15
DiningPhil 0.20 1.00 0.02 1.00 0.72 0.20 0.72
Barbershop 0.10 0.00 0.20 0.58 0.40 0.10 0.38

the remaining 10 errors are not found by either implementation. In this case on our

time table, MinOnly gets a 1 because it finds the quickest the most errors. Max-

Overlap gets a 0.5, which is the ratio of the 10 errors that it finds the quickest over

the 20 errors that MinOnly finds the quickest. There is the rare case where both

implementations find an error at the same time, but this does not significantly affect

the comparison, since both implementations would get a point in this case. The same

methodology is used to create all the other tables.

5.5.2 Data Interpretation

Looking at the tables in this section, one can see that MinOnly wins on most models

over the other techniques in all measured categories. AMCS and its variations never

win in terms of time, and in the other categories, on most models they compete with
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Table 5.3: Normalized states results

Models AMCS RandDFS AMCSNoTP MinOnly MaxOverlap AddAll MinSet
Branches 0.00 1.00 0.09 0.09 0.36 0.00 0.00
SumToNBig 0.47 0.00 0.47 1.00 0.71 0.47 0.47
CustWorkers 0.00 0.14 0.00 1.00 0.36 0.21 0.21
MultiplyToN 0.37 0.00 0.42 1.00 0.68 0.37 0.32
Hyman 0.00 0.08 0.00 1.00 0.08 0.00 0.25
DiningPhil 0.30 0.74 0.04 1.00 0.78 0.30 0.78
Barbershop 0.17 0.00 0.42 1.00 0.71 0.17 0.67

Table 5.4: Normalized error depth results

Models AMCS RandDFS AMCSNoTP MinOnly MaxOverlap AddAll MinSet
Branches 0.07 0.29 0.14 0.64 1.00 0.07 0.43
SumToNBig 0.44 0.00 0.44 1.00 0.67 0.44 0.44
CustWorkers 0.32 0.00 0.00 1.00 0.47 0.32 0.32
MultiplyToN 0.25 0.00 0.29 1.00 0.50 0.25 0.21
Hyman 0.00 0.00 0.00 1.00 0.06 0.00 0.22
DiningPhil 0.20 0.00 0.02 1.00 0.72 0.20 0.72
Barbershop 0.17 0.00 0.35 1.00 0.70 0.17 0.65

each-other for the last places. MaxOverlap is the second best on most models on all

categories.

Time and Errors Found

The time results are shown in Table 5.1. Looking at the MinOnly column, one can

notice that it has the most 1-s, showing its superiority in error discovery speed. We

attribute this superiority to its relatively low computational overhead, which gives it

a time and memory advantage during the search. MinOnly loses to MaxOverlap on

Branches and to RandomDFS on DiningPhil. We attribute these loses to the fact

that the winner implementations are a better match for these particular models.

Table 5.2 shows the fraction of total errors that each implementation finds on

each model. Looking at Table 5.2, we can see that both MinOnly and RandomDFS

find all errors on DiningPhil ; however looking at Table 5.1 we see that RandomDFS

24



www.manaraa.com

Table 5.5: Normalized predicate results

Models AMCS RandDFS AMCSNoTP MinOnly MaxOverlap AddAll MinSet
Branches 0.08 0.00 0.08 0.08 1.00 0.08 0.31
SumToNBig 0.57 0.00 0.57 1.00 0.86 0.57 0.57
CustWorkers 0.38 0.00 0.00 1.00 0.56 0.38 0.38
MultiplyToN 0.37 0.00 0.42 1.00 0.74 0.37 0.32
Hyman 0.00 0.00 0.00 1.00 0.06 0.00 0.24
DiningPhil 0.20 0.00 0.02 1.00 0.72 0.20 0.72
Barbershop 0.00 0.00 0.00 1.00 0.00 0.00 0.65

wins on time on four times more errors. Since both techniques find all errors and the

errors are randomly spread throughout the whole state space, we can deduce that

both implementations come close to exploring the whole state space of DiningPhil.

The data suggest that in situations where state explosion is not present, RandomDFS

may be more effective for certain types of models. So MinOnly does not guarantee to

perform better on all models and all situations; however, based on our experiment,

it is hard to deny its superiority on these models. This superiority makes it a good

choice for real life situations, where in most cases, we do not know the size of the

input models or whether we are able to explore their entire state space. Because

MinOnly is fast, Table 5.2 shows that it finds the most errors on all models except

Branches. Finding more errors also gives MinOnly an advantage in terms of states,

predicates, and error depth.

The MaxOverlap column also shows interesting results. On Branches, Max-

Overlap wins over all other models, and on SumToN, it performs comparably with

MinOnly. It shows relatively poor results on all other models compared with MinOnly,

which could be attributed to the fact that it has more computational overhead in com-

puting predicates for the next refinement step. Another reason why MaxOverlap is

slower than MinOnly is that it adds only one predicate at a time on each refinement

step, thus expanding the abstract state space too slowly. As a consequence, it ends

up not finding many of the errors, as shown in Table 5.2.
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MinSet shows poor performance in both Table 5.1 and Table 5.2. We attribute

this poor performance to the computational cost that MinSet incurs when computing

its minimal set of predicates that splits all abstract states. In addition, we find that

MinSet incurs a significant memory cost to build the table for the min-cover problem.

RandomDFS also shows good performance in Table 5.2. It comes first on

DiningPhil and second on CustWorkers and Hyman. RandomDFS is fast because it

does not have the computational overhead of abstracting states and finding predicates

in refinement steps.

In terms of memory, we focus mostly on MaxOverlap, MinOnly, and Ran-

domDFS since they are the top three performers on percentage of errors found. We

are safe to make this simplification because the rest of the implementations are very

slow in finding errors. It is to be noted that MaxOverlap is the expected winner

in terms of states and predicates due to the fact that it has the most conservative

predicate adding technique.

States and Predicates

Looking at the MinOnly column in Table 5.3, it is evident that it has the most 1-

s; however, looking at the percentage of errors found, MaxOverlap shows promising

results in terms of states. On Branches MaxOverlap and MinOnly find roughly the

same percentage of errors. Now moving to Table 5.3, MaxOverlap performs four

times better on states than MinOnly. On MultiplyToN MinOnly finds twice as many

errors as MaxOverlap, so half of the errors that MinOnly wins on states are by default

because MaxOverlap does not find them. Looking at Table 5.3, MaxOverlap wins on

states on 68% as many errors as MinOnly. So if we do not count the errors where

MinOnly wins by default, MaxOverlap has a higher score on states. Following a

similar logic, one can see that MaxOverlap performs comparably with MinOnly on
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SumToN, DiningPhil, and Barbershop. This trend of MaxOverlap performing well in

terms of states can be attributed to its conservative predicate-adding technique.

MinSet also performs well in terms of states. This result is because MinSet also

has a conservative technique for adding predicates on each refinement step. Consid-

ering the relatively low percentage of errors that it finds, we are induced to think that

MinSet is a promising technique assuming that a less costly method for computing

predicates could be found.

The results on predicates are shown in Table 5.5. The data in this table

reflects the pattern that we see on states, with MaxOverlap performing better than

MinOnly if we do not consider the errors where MinOnly wins by default. MinSet

also shows good results in terms of predicates because it also has a conservative

predicate-generation technique.

Depth

The result for error depth are shown in Table 5.4. Looking also at Table 5.2, there

is no clear winner among the under-approximating techniques, which is explained by

the fact that they all use a similar search order. An interesting result is shown by

RandomDFS which gets 0.00 on all models, indicating that if we are looking for short

counter-example traces, RandomDFS is not ideal because it tends to go deep and find

the longer paths to the error.

5.5.3 Threats to Validity

A threat to the validity of our experiment is the diversity of our models. It is true

that most of our models are well-known concurrency problems in computer science,

but our study lacks comprehensiveness due to their limited number. Theoretically, we

cannot exclude the possibility that different models might provide different results,

but this threat is very hard to avoid in any empirical analysis. Another threat to
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validity is the five minute time-bound that we allow for searching each model. It

is hard to determine how this time bound would scale in industry, when searching

models in the orders of billions of states.
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Chapter 6

Conclusions and Future Work

We present three new under-approximation techniques that outperform AMCS

in error discovery in terms of: time, states, predicates, and error depth. In addition,

all our approaches guarantee termination. Out of these techniques, MinOnly finds

errors in significantly less time on five out of seven models, due to its low computa-

tional overhead. Because it operates fast, Min-Only also finds the largest number of

errors on six out of seven models.

Max-Overlap shows promising signs in keeping the abstract state space small

and might be a good choice for applications where space is very critical. However,

its slow approach in adding predicates is a serious drawback. MinSet on the other

hand, shows serious flaws due to its large computational overhead. However, the idea

of finding a minimum set of predicates that splits all members of Elibible(Φ), might

show better results if a different algorithm is used for its implementation.

A future venue is to look for a better bissimulation-detecting technique. AMCS

detects bissimulation through precision and weakest precondition, which are the roots

of its non-terminating drawback. Another promising idea is in finding a way to add

predicates so that a bissimulation is created before exploring the whole concrete state

space. However, until we have faster theorem provers, techniques similar to the ones

that we propose will have the advantage.
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